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ABSTRACT

With the anticipated rise in temperatures due to climate change, organic vectors
— known as carriers of certain diseases — may become more active in the coming
years. Therefore, it is necessary to forecast the breakout of these diseases based
on historical climate data. In this project, we aim to tackle this research challenge
by designing a robust predictive model that can predict disease incidence. Specif-
ically, our proposed framework named PEC (Predict and Explain from Climate
Data) utilizes time-series climate data complemented by other factors such as land
usage (image) or human activity data for a specific area. Moreover, PEC is de-
signed to be conditioned on epidemiological information, enabling context-aware
predictions. Beyond this, our framework incorporates post hoc model explana-
tions on predictions, increasing transparency and trustworthiness of the model. In
our preliminary experiments, we use Lyme Borreliosis disease as a case study and
we are able to effectively demonstrate the correlation between the disease inci-
dence and climate factors, highlighting the potential of using the proposed model
in practical deployment.

1 INTRODUCTION

Climate change poses direct and indirect threats to human health, highlighting a complex relation-
ship with our environment. This includes the effect of climate on infectious diseases, mortality, and
various health outcomes (Rocque et al., 2021). Specifically, climate change impacts the behavior
and distribution of vectors like ticks, which transmit diseases such as Lyme Borreliosis. Warmer
winters and altered seasonal patterns due to climate change increase tick activity and, therefore, the
risk of disease transmission (Gray et al.,|2009). Climatic factors significantly influence the life cycle
of vectors (ticks), the exact relationship is complicated by numerous factors. Despite evidence of
climate change data in tick survival and activity, the precise modeling of disease incidence based on
climate data, as well as other factors such as human activity, remains challenging (Vermont, [2023).
Therefore, utilizing machine learning models can successfully capture the intrinsic relationship be-
tween climate data and disease incidence.

Prior work has demonstrated the potential of Al in predicting the impact of climate change or aiding
in climate change mitigation across multiple sectors (Sandalow et al., |2023). For instance, [Zeng
& Bertsimas| (2023)) propose to use a multimodal model for multi-year global flood risk prediction.
The model extracts embeddings from text-based geographical data and time-series climate data.
Moreover, |Ning et al.| (2023)) demonstrate that using graph re-sampling technique and Graph Neural
Networks (GNNs) achieves precise global sea surface temperature forecasting. In this study, we
address a novel and significant challenge in the sector of public health: forecasting disease incidence
attributed to climate change.

The objective of this project is to implement the proposed model PEC for predicting disease inci-
dence based on climate data. In addition to training this predictive model, our project will delve into
post hoc model explanation techniques, ensuring that high-quality explanations are provided along-
side the predictions. This presents several research challenges and novel aspects for our model,
including (1) the development of a conditional time-series model and (2) the generation of effective
model explanations tailored for the time-series model for regression settings.

*These authors contributed equally to this work
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Figure 1: Overview of PEC. Input data (time-series data) is given on the left and the output on the
right. Data highlighted in pink is used as the conditional input of the model.

2 PEC MODEL DESIGN

2.1 PREDICTIVE MODEL

We introduce the PEC model, a novel approach designed to leverage multi-modality data for fore-
casting with time-series inputs, as illustrated in Figure[T|on the left. The model incorporates climate-
related variables, including temperature, sunshine duration, and precipitation, to provide a compre-
hensive representation of climate conditions. Furthermore, we use land usage information derived
from remote sensing images. By analyzing the color of pixels of an area, we can categorize land
usage based on colors. This analysis allows us to identify areas with significant vegetation, which
are known to be active habitats for vectors (ticks). The third group of input is ecological informa-
tion of that area such as host density and human population. PEC is predicated on contemporary
epidemiological insights, including the “Biological Perspective of Vectors” and the “Mobility of
Hosts,” which reflect current information rather than historical data. This allows for more tailored,
relevant, and context-specific predictions (specific diseases and locations) from the model. These
data will be encoded as a feature embedding to indicate a condition.

Another challenge in this project lies in designing the predictive model. Our strategy is to integrate
the conditional vector with recurrent neural networks (RNN5s) to develop a robust conditional RNN
model. Formally, this RNN model can be defined as follows:

he = f(hi—1, ), (1
Ot = g(hta 6)7 (2)
gt = O[(Ot), (3)

where f(-) and g(-) denote non-linear transformations, and «(+) represents an activation function.
c indicates the condition embedding learned from epidemiological data. To integrate the condition
embedding c in the output o, we consider g(hy, ¢) = a(Wphy + Wec + b). Thus, the prediction g,
is derived from the historical data x;.; and c.

2.2 MODEL EXPLANATION

Explainability in time-series data has primarily focused on classifying series, aiming to determine
how each feature at any timestep influences the output class. These methodologies can be catego-
rized into three classes. Firstly, gradient-based methods, as highlighted by [Baehrens et al.|(2010);
Sundararajan et al.| (2017); Smilkov et al.| (2017); Bargal et al.| (2018)), employ gradients to under-
stand feature influence. Secondly, perturbation-based methods (Zeiler & Fergus|, 2014} Suresh et al.}
2017; Ismail et al., [2020) introduce perturbations to the input data and monitor the resultant impact
on the model output, thereby identifying the most critical features for decision-making. Thirdly,
attention-based methods (Choi et al.| 2016} |Alaa & van der Schaar, [2019) leverage training pro-
cesses to prioritize significant features automatically. In the prior research, only Raman et al.|(2023)
specifically emphasize post-hoc model-agnostic explanations for probabilistic forecasts. Their ap-
proach is rooted in the concept of counterfactual explanation, which identifies the timesteps that are
salient for probabilistic forecasts. Thus, we mark the generation of explanations for time-series data
in the regression settings as another research challenge in this project.
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As there is no consensus on whether model explanation technique can improve user’s understand-
ing (Rong et al., 2023)), we plan to first adopt the method in |Raman et al.[ (2023)) to get promising
model explanations based on the automatic evaluation such as using fidelity (Rong et al.,|2022; [Tom-
sett et al.,[2020) or simulated users (Chen et al.,2022). Upon receiving the results, we will conduct
a human subject evaluation on which model assists users in understanding the model decisions.

3 PRELIMINARY RESULTS

In this section, we demonstrate our preliminary results on predicting Lyme Borreliosis disease in-
cidence using climate data. In this experiment, we obtained the climate data from the public local
weather service agency and data includes historical temperature, sunshine duration, and precipita-
tion. The disease incidence data was provided by BLIND-FOR-REVIEW.

We first validate the correlation between the climate data and the disease incidence using Pearson
correlation r. The results are demonstrated in Figure 2] From the result, we observe a strong
correlation between temperature and incidence with » = 0.82. Similarly, sunshine duration is also
highly correlated to disease transmission (r 0.63). As these factors are attributed directly to
warm weather, they are evident indicators of the activities of vectors, and thus link to the disease
transmission. On the other hand, precipitation is correlated to the incidence with » = 0.39.

Given the strong correlation, we deploy a straightforward model to further verify whether the in-
trinsic relationship can be captured. Concretely, we use Autoregressive Integrated Moving Average
(ARIMA) to perform the (short-term) prediction. The process of fitting an ARIMA model involves
identifying the optimal values of p (the number of lag observations), d (the number of times that the
raw observations are differenced) and ¢ (the size of the moving average window) that best capture
the autocorrelation structure of the time series. Figure [3]presents the prediction, where we observe
our prediction in orange is close to the ground-truth data in blue. The promising results highlight
the possibility of preciser incidence prediction using a more advanced time-series machine learning
model with various information input.
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Figure 2: Pearson correlation r between the disease incidence and various climate data factors. -
value is shown below each figure.
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Figure 3: Prediction results from the ARIMA model using climate data. The X-axis refers to time,
and the Y-axis refers to disease incidence. The blue line indicates the ground-truth data, while the
orange highlights model predictions.
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